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Abstract— The coronavirus disease 2019 (COVID-19) pandemic is spreading all over the world, requires a crucial diagnosis of individuals to help re-

duce virus transmission. The current gold standard for covid-19 diagnosis using polymerase chain reaction (PCR) can take a few hours/days, which is 

problematic. The most promising and inspiring domain for the utilization of computational intelligence (CI) approaches is medication, and furthermore 

one of the most challenging domains to see an effective and successful adoption by clinician. However, CI approaches further strengthen the power of 

the imaging tools and help medical specialists in the global fight against COVID-19 with help of clinical imaging such as X-ray and computed tomography 

(CT). This paper presents a review of the developments issues on a diagnosis of covid-19 based on clinical image, and how computational intelligence 

(CI) methods applied for diagnosis of covid-19, that gives precise and effective imaging solutions for various Coronavirus diagnosis applications have 

been investigated. Nonetheless, the strength, weaknesses, and accuracy of various methods applied, the state-of-the-art datasets utilized, and various 

difficulties on the identification of abnormalities on diagnosis based on the clinical image have also been discussed. Lastly, this survey also gives new 

insight into future research requirements in the clinical image-based diagnosis of coronavirus disease 2019 (Covid-19). 

 

Index Terms— Computational Intelligence, Medical Image, X-ray, Computed Tomography (CT), Covid-19 Diagnosis, Coronavirus Detection.   

——————————      —————————— 

1 INTRODUCTION                                                                    

N this Covid-19 global health emergency, the clinical indus-

try is looking for new computational intelligence approach-

es to screen and controls the spread of COVID- 19 (Corona-

virus) pandemic. Computer-based intelligence is one such in-

novation that can effectively track the spread of this infection, 

recognizes the high-hazard patients, what's more, is valuable 

in controlling this contamination progressively. It can likewise 

predict mortality hazards by satisfactorily examining the past 

data of the patients. Computational intelligence can assist us 

with fighting this infection by populace screening, clinical as-

sistance, warning, and recommendations about disease control 

[1][2]. This innovation can improve the treatment, planning, 

and revealed results of the COVID-19 patient, being a proof-

based clinical device. 

All these are realized because of the approach of the data age, 

additionally usually known as the digital age, has had a signif-

icant effect on health sciences. Tremendous amounts of da-

tasets now move through the various phases of healthcare or-

ganizations, and there is a significant prerequisite to extract 

knowledge and utilize it to improve these sectors in all re-

gards. Computational intelligence frameworks offer help to 

medical experts included both in the clinical doctors and ad-

ministrative settings. Among these frameworks, computation-

al intelligence techniques have increased expanding preva-

lence given their capacity to adapt to a lot of clinical infor-

mation and uncertain data [3]. Besides, the doctor isn't just 

centered around the treatment of the patients, yet besides the 

control of illness with the computational intelligence applica-

tion. Significant manifestations and test investigation are fin-

ished with the assistance of computational intelligence with 

the most elevated of precision. It additionally shows it dimin-

ishes the complete number of steps taken in the entire proce-

dure, making progressively obtainable [4]. 

Computer-based intelligence can rapidly break down sporadic 

symptoms and other 'warnings' and in this manner caution the 

patients and the healthcare experts [5], [6]. It assists in giving 

quicker decision making, which is financially savvy. It assists 

with building up another diagnosis and the executive’s 

framework for the COVID 19 cases, through valuable algo-

rithms. Computational intelligence is useful in the diagnosis of 

tainted cases with the assistance of clinical imaging advance-

ments like Computed tomography (CT), Magnetic resonance 

imaging (MRI) scan of the patient's body, and X-Ray images. 

Besides, the majority of these processing instruments are gen-

erally new and as yet developing regarding the clinical field, 

and there are various related issues that despite everything 
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should be valued and understood. Moreover, health experts 

and related partners have not completely grasped these ad-

vances, however. Therefore, perilous decisions are still intense-

ly dependent upon human-based interpretations that are tedi-

ous and lack understanding of data assessments. This is valid 

despite numerous innovations being much slower when com-

pared with decisions got from the utilization of traditional 

computing. Based on this, it is noticed that legitimate frame-

works can assist with managing issues like data collection and 

sharing prompting greater receptivity by the health communi-

ty. Besides, the absence of normalization of protocols addi-

tionally implies that the extent of data to be analyzed is re-

stricted to explicit zones. In this manner, results got in particu-

lar clinical as well as topographical areas may not apply in 

others [7]. 

Even though real-time reverse transcriptase-polymerase chain 

reaction (RT-PCR) has been thought of as the best quality level 

for Covid-19 diagnosis, suspected patients delay accurate di-

agnostics due to very limited supply, severe prerequisites for 

laboratory facility and 4-6 Hours delays to obtained results, 

which would incredibly defer exact diagnosis of suspected 

patients, which has presented phenomenal difficulties to fore-

stall the spread of the disease, especially at the center of the 

scourge zone. Conversely, with it, chest computed tomogra-

phy (CT) is a quicker and simpler strategy for clinical diagno-

sis of COVID-19 by combining the patient's clinical symptoms 

and signs with their ongoing close contact, travel history, and 

laboratory discoveries, which can make it feasible for speedy 

diagnosis as right on time as conceivable in the clinical prac-

tice. Now, what is the key to a quick, fast, and less expensive 

diagnosis of Covid-19? The answer is chest CT and other med-

ical image-based as a key part of the diagnostic strategy for 

suspected patients and its CT appearances have been empha-

sized in a few ongoing reports [8]–[10]. The inspiration for this 

survey is to introduce the bigger picture of the issues and de-

velopments in the clinical diagnosis of COVID-19 and to inves-

tigate the different computational intelligence (CI) methods 

applied for various clinical diagnostic tasks. 

2 METHODOLOGY 

In this investigation, the latest articles identified with various 
computational intelligence (CI) methods utilized in the clinical 
diagnosis of Covid-19 have been reviewed. The recent articles 
for the distinctive CI strategies were looked through thorough-
ly from credible sources, for example, ScienceDirect, IEEE 
Xplore, Springer, and PubMed named it. We have included 
just the articles distributed from the beginning of coronavirus 
disease, December 2019 to September 2020. The researchers 
have utilized both the nonexclusive and explicit hunt strings 
on the above databases to look through the articles. The given 
strings have been looked at on the above databases, both in 
parts and as an entirety. The following are the biggest conven-
tional inquiry string with keywords used to look through the 
articles. ‘‘(‘Deep learning’, ‘Computational intelligence’, ‘Soft 
computing', 'Machine learning', 'Artificial intelligence' ‘Convo-
lutional neural network’) based ('approaches' OR 'techniques' 
OR 'methods') in ('medical disease diagnosis) of (‘Coronavirus’ 
or ‘Covid-19') OR 'clinical decision support system of (‘Coro-
navirus’ or ‘Covid-19'), OR 'computer-aided medical diagnosis 
of Coronavirus or Covid-19')’’. 
‘‘('Hybrid') computational ('approaches' OR 'techniques' OR' 
methods') in ('medical disease diagnosis' OR 'clinical decision 
support system' OR 'clinical medicine' OR 'computer-aided 
medical diagnosis' of (‘Coronavirus’ or ‘Covid-19’)’’. 
 ‘‘(Uncertainty) handling ('approaches' OR 'techniques' OR 
'methods') in ('medical disease diagnosis' OR 'clinical decision 
support system' OR 'clinical medicine' OR 'computer-aided 
medical diagnosis') of (‘Covid-19’ or ‘Coronavirus’)’’.  
At first, the articles have been chosen by going through their 
abstract. Likewise, a few articles were chosen via looking 
through the reference of the articles. The chose articles have 
been evaluated in depth. Table 1 summarized the surveyed 
articles' references, methodology, diagnostic task, and data-
base used. Also, Table 2 summarized the surveyed articles' 
references, strengths, weaknesses, and accuracy. 
 

TABLE 1 
SUMMARY OF THE SURVEYED METHODOLOGY, DIAGNOSTIC TASK, AND DATABASE USED. 

 

References  Methodology  Diagnostic tasks  Database used 

[11] UNet++ Diagnosis  Datasets from Renmin Hospital of 
Wuhan University, 51 patients con-
firmed cases of Covid-19 and 55 of 
other diseases.  

[12] 3D CNN Model Classification  A total sum of 618 CT samples was 
collected, out of 219 patients, 110 are 
confirmed case of Covid-19. The re-
maining 399 was the control experi-
ment group which constituted 224 
CT samples of patients with Influenza 
viral pneumonia and 175 CT sample 
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of Healthy folks.     

[13] DL-Based Segmentation 
Network: VB-Net 

Segmentation  A Sum of 300 CT scans of Covid-19 
patients collected from the Shanghai 
Public Health Clinical Center and 
other 249 covid-19 patients CT imag-
es were also collected outside Shang-
hai for training. 

[14] 2D and 3D deep learning 
models 

Detection, characterizing, 
and tracking. 

157 multinational datasets comprise 
of China and USA. 

[15] Infection Size Aware Ran-
dom Forest meth-
od(ISARF) 

Classification  A total sum of 2685 CT images was 
collected from three different cen-
ters, which comprises (Tongji Hospi-
tal of Huazhong University of Science 
and Technology, Shanghai Public 
Health Clinical Center of Fudan Uni-
versity, and China-Japan Union Hos-
pital of Jilin University). The datasets 
made-up of 1658 confirm the case of 
Covid-19 and 1027 community-
acquired pneumonia.  

[16] Deep Convolutional Neu-
ral Networks (CNN) 

Classification   Datasets utilized in the study was 
collected from two recently published 
article and the other two was gath-
ered by the author. 

[17] CNN Model Classification  A Sum of 99 CT images of patients 
was collected, among which are, 55 
typical viral pneumonia cases and 44 
confirmed cases of covid-19 from 
three different center as follows 
(Xi'an Jiaotong University First Affili-
ated Hospital, Nanchang University 
First Hospital, and Xi'an No.8 Hospital 
of Xi'an Medical College) 

[18] DeepPneumonia Diagnosis  Datasets were collected from two 
different centers, Renmin Hospital of 
Wuhan University and Sun Yat-sen 
University in Guangzhou. The CT 
images obtained comprises 88 con-
firmed covid-19 patients, 101 other 
pneumonia patients, and 86 healthy 
people for diagnosis. 

[19] DeCoVNet Detection  Datasets were collected in this study 
in Union Hospital, Tongji Medical 
College, Huazhong University of Sci-
ence and Technology. 540 patients 
engaged in the study, which compris-
es 313 patients clinically diagnosed 
with covid-19 positive and 227 pa-
tients without covid-19.  

[20] CovNet Detection  A total of 3,322 CT images of patients 
were obtained from 6 different clini-
cal centers, which comprises of 30% 
confirmed covid-19, 40% communi-
ty-acquired pneumonia, and %30 
non-pneumonia.  

[21] Bayesian Convolutional 
Neural 
Networks (BCNN) 

Diagnosis  The paper used available public da-
tasets of 68 x-ray images of covid-19 
confirmed cases from Dr. Joseph Co-
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hen’s Github repository and Kaggle’s 
Chest X-Ray Images (Pneumonia) 
from healthy patients. 

[22] COVIDX-Net Classification  5o X-ray images datasets from the 
public repository by Dr. Joseph Co-
hen and Dr. Adrian Rosebrock was 
used, which comprises 25 negative 
and 25 positive Covid-19 cases. 

[23] Deep CNN, Decompose, 
Transfer, and Compose 
(DeTraC) 

Classification Healthy folk datasets from the Japa-
nese Society of Radiological Technol-
ogy (JSRT ) was collected, which con-
tains 80 sample and another 105 
covid-19 confirmed cases and 11 
sample SARS was also utilized in the 
study.  

[24] Deep learning algorithm  Detection and quantification The datasets use consist of 110 CT 
scan of confirmed COVID-19 patients 
from Zhejiang 
province, China. 

[25] CNN Classification  The study used publicly available da-
tasets by Dr. Joseph Cohen available 
from a GitHubrepository, which con-
sists of 137 x-ray images of con-
firmed covid-19 cases, and 117 im-
ages of healthy people with pneu-
monic disease similar to covid-19 
from the Kaggle repository.  

[26] Deep learning  Classification  The datasets used during the experi-
ment in this study was collected from 
multiple sources such as the Radio-
logical Society of North America 
(RSNA), U.S. national library of 
medicine (USNLM) collected Mont-
gomery country - NLM(MC) and 
COVID-19 image dataset is a public 
database of pneumonia cases with 
CXR images related to 
COVID-19, MERS, SARS, and ARDS. 

[27] DenseNet201 
model 

Identification and diagnosis  Covid-19 datasets from Kaggle were 
utilized in the study, which comprises 
a sum of 2492 CT-scans out of which 
1262 are positive for covid-19. 

[28] Deep learning algorithm  detection, segmentation, and 
location 

A Sum of 96 datasets was collected, 
out of which 84 patients from Taihe 
Hospital, Shiyan, Hubei; 11 from Wu-
han First Hospital,Wuhan, Hubei; 1 
from Jinling Hospital, Nanjing, Jiangsu 
was used during testing of the algo-
rithm. 

[29] Deep learning  Detection  The datasets used from GitHub, 
Kaggle, and Open-i. 

[30] deep transfer learning Detection  Published available datasets by [31] 
were used in the study.  

[32] SVM Classification   Datasets of 53 infected patients from 
Societa Italiana di 
Radiologia Medica e Interventistica 
was utilized. 

[33] convolutional neural net- Detection  A total of 50 datasets of covid-19 
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work open-source GitHub repository 
shared by Dr. Joseph Cohen and an-
other 50 x-ray images of pneumonia 
from Kaggle was obtained. 

[34] Multi-class Classification 
and Hierarchical Classifi-
cation 

Classification  The datasets used in the study were 
collected from three different sources 
such as Dr. Joseph Cohen GitHub re-
pository, Radiopedia encyclopedia, 
and NIH dataset. 

[35] Fast Fourier Transform 
(FFT based)  

Diagnosis  A total of 275 positive and 195 nega-
tive CT images of covid-19 patients 
were collected from the GitHub re-
pository.  

[36] Case-based reasoning 
(CBR) method 

Detection and diagnosis  The researchers curated new datasets 
of COVID-19 from some publicly 
available data from a standard source 
such as the Italian Society of Medical 
and Interventional Radiology (SIRM) 

[37] ML algorithms Identification  A Sum of 6,512 patients from seven 
different provinces (Anhui, Guang-
dong, Henan, Jiangsu, Shandong, 
Shanxi, and Zhejiang) in China da-
tasets of covid-19 downloaded from 
GitHub repository. 

[38] Transfer learning with 
CNNs 

Classification  Several sources of 
X-rays datasets from the public do-
main were collected such as GitHub 
repository, Radiological Society 
of North America (RSNA), Radiopae-
dia, and Italian 
Society of Medical and Interventional 
Radiology (SIRM) 

[39] Artificial neural network 
and Convolutional Cap-
sNet 

Diagnosis  Datasets x-ray images of covid-19 and 
pneumonia from public domain such 
as GitHub and other web service 
used in this study. 

[40] 2D curvelet transfor-
mation, chaotic salp 
swarm 
algorithm (CSSA) and 
EfficientNet-B0 

Diagnosis  The researchers created a dataset in 
total, 2905 x-ray images used in the 
study, which comprises of 219 
COVID-19 patients, 1341 normal, and 
1345 viral pneumonia. 

  

TABLE 2 
SUMMARY OF THE SURVEYED STRENGTHS, WEAKNESSES, AND ACCURACY 

 

References  Strengths  Weaknesses  Accuracy  

[11] The model has compared with 
experts Radiologists and shows a 
shorter time than experts. Also, 
the model was highly sensitive 
and stable, and would never be 
affected by work burden, subjec-
tive status, and outside pressure. 
Analysis by radiologists reduced 
by 65%. 

The datasets used were very 
small and the model utilized 
was not compared with any 
other model. 

The model shows a sensi-
tivity of 100%, a specifici-
ty of 93.55%, accuracy58 
of 95.24%, PPV of 
84.62%, and NPV of 
100%; a per-image sensi-
tivity of 94.34%, a speci-
ficity of 
59 99.16%, accuracy of 
98.85%, PPV of 88.37%, 
and NPV of 99.61% in 
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retrospective dataset. 

[12] The model classifies three differ-
ent CT sample, which includes, 
Covid-19, Influenza pneumonia, 
and non-infection folks. Also, the 
model performed much better 
than RT-PCR testing. 

Effective monitoring of patient 
progress over time not embed-
ded in the model 

The model indicated an 
AUC of 0.996 (95%CI: 
0.989–1.00) for Corona-
virus vs Non-coronavirus 
cases per thoracic CT 
studies. They calculated a 
sensitivity of 98.2% and a 
specificity of 92.2%. 

[13] The model quantifies the COVID-
19 infection region, thus, provide 
the basis for evaluation of severi-
ty Covid-19 and tracking pro-
gressing changes over time dur-
ing treatment. Also, the model 
provides a 3D rendering early 
stage, progressive stage, and se-
vere stage of the infection.  

The model quantifies covid-19 
infections lesion only not in-
cludes other pneumonia. The 
validation datasets were also 
collected from one region, 
which may not be the same 
with a covid-19 patient in an-
other zone. Furthermore, the 
model was not compared with 
another existing model.   

The results show dice 
similarity coefficients of 
91.6%±10.0% between 
automatic and manual 
segmentations. Validation 
datasets also show an 
estimation error of 0.3% 
and lastly eliminate man-
ual delineation of 1-5 
Hours to 4 minutes when 
the model loop 3 times. 

[14] The proposed system detects, 
characterize, and track the pro-
gression of COVID-19 over time. 

The datasets were too small. 
The model was not applicable 
in detecting other pneumonia. 

The model achieved 
0.996 AUC (95%CI: 
0.989-1.00); on datasets 
of Chinese control and 
infected patients. Possible 
working point: 98.2% 
sensitivity, 92.2% speci-
ficity. 

[15] The model proposed size-aware 
and location-specific of the dis-
ease and separated the cohorts 
into different sizes. The study 
compared the handcrafted fea-
tures with Radiomics features 
extracted directly from infected 
lesions. 

The tracking progression of 
Covid-19 and symptom 
severity was not included in 
the study. correlation between 
symptoms and radiologic find-
ings were not compared with 
pneumonia-related clinical 
characteristics. 

The proposed method is 
shown a screening of 
COVID-19 from CAP with 
90.7% sensitivity, 83.3% 
specificity, and 87.9% 
accuracy. 

[16] The study compared four differ-
ent CNN based deep learning 
algorithms on x-ray images, 
which shows that SqueezeNet 
outperforms the other three 
AlexNet, ResNet18, Dense-
Net201. 

None of the models quantifies 
the infected region or shows 
the severity of the infection. 
The models only classify and 
not be able to monitor the pro-
gress of the ailments over time.   

The research results 
show accuracy, sensitivi-
ty, specificity and preci-
sion for both the schemes 
were 98.3%, 96.7%, 
100%, 100% and 98.3%, 
96.7%, 99%, 100%, re-
spectively 

[17] The algorithms tested with ex-
ternal data and achieved 73% 
accuracy.  

The datasets utilized were very 
small and did not include 
healthy patients. The algorithm 
used is not compared with the 
existing one. Only one radiolo-
gist was involved in the study 
and features analyzed were 
from a patient with severe lung 
lesions. 

The model achieved an 
accuracy of 82.9% with a 
specificity of 80.5% and a 
sensitivity of 84%. The 
external testing dataset 
showed a total accuracy 
of 73.1% with a specifici-
ty of 67% and sensitivity 
of 74% 

[18] One of the most important fea-
tures of the model was its inter-
pretability, and the model visual-
ized the extracted details. Besides, 
the model provides convincing 

The datasets used were very 
small. The model was not able 
to quantify infected lesions in 
the lung. Progression over time 
does not monitor by the model.  

They show excellent re-
sults of AUC of 0.99 and a 
sensitivity of 0.93. Also, 
the model distinguished 
between Covid-19 patient 
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clues on the factors for its deci-
sion making, and automatically 
to identify the lesions from CT 
images. 

and pneumonia infected 
patients with an AUC of 
0.95 and a sensitivity of 
0.96. 

[19] Even without COVID-19 lesions 
annotation by experts, the model 
used a weakly-supervised deep 
learning algorithm, which shows 
high performance on COVID-19 
detection. 

Temporal information was not 
used for lung segmentation by 
the model which could be im-
proved by a 3D segmentation 
network and an expert's radi-
ologist. The datasets utilized by 
the study collected from a sin-
gle center and expert radiolo-
gist not included in this study. 

The results of this study 
shown 0.959 ROC AUC 
and 0.976 PR AUC. There 
was an operating point 
with 0.907sensitivity and 
0.911 specificities in the 
ROC curve. When using a 
probability threshold of 
0.5 toclassify COVID-
positive and COVID-
negative, the algorithm 
obtained an accuracy of 
0.901, a positive predic-
tive value of 0.840, and a 
very high negative predic-
tive value of 0.982. 

[20] The model visualized the im-
portant region of the lung in oth-
er to improved interpretability of 
the framework without manual 
annotation that leads to decision 
making.  Abnormal regions were 
paid attention to by the algo-
rithm while ignored the normal-
like region.  

The performance of CovNet 
was not evaluated in distin-
guishing Covid-19 from anoth-
er pneumonic virus. Heatmaps 
are used to visualized unique 
features from the image in de-
cision making not enough. The 
algorithm was not able to clas-
sify covid-19 into different 
severity.  

The model CovNet 
achieved sensitivity and 
specificity for identifying 
COVID-19 in the inde-
pendent test set was 114 
of 127 (90% [95% CI: 
83%, 94%]) and 294 of 
307 (96% [95% CI: 93%, 
98%]), respectively, with 
an AUC of 0. 
(p-value<0.001). 

[21] Uncertainty estimation by the 
model adds insight to point pre-
diction performance to improve 
the reliability of the automated 
framework, which can alert radi-
ologists on false predictions, 
which will 
increase the acceptance of deep 
learning into clinical practice in 
covid-19 diagnoses. 

The datasets utilized for covid-
19 were too small, the model 
not test with external data, and 
collected from a single reposi-
tory. The model does not quan-
tify the region of the infections 
on the lungs. Treatment follow-
up and responses overtime not 
provided by the model. 

The model showed expe-
rienced radiologist (i.e. 
80% accuracy), when 
joined the performance 
reaches 90% when reject-
ing either almost 40% 
of the most uncertain 
samples or samples with 
Hnorm >= 0.4. For less 
than 2% of decisions re-
ferred for further inspec-
tions, there is a 95% con-
fidence interval of the two 
non-overlapping scenari-
os. 

[22] The COVIDX-Net framework, 
compared 7 various classifiers 
based on deep learning algo-
rithms which shows the best 
performance among them are 
VGG19 and DenseNet201models. 

Scanty datasets were used to 
test the models. The model 
cannot classify another pneu-
monic disease. The model was 
not able to classify whether the 
disease was severe or not. Also, 
the models were not able to 
quantify the region of the dis-
ease in the lungs. 

The results of VGG19 and 
Dense Convolutional 
Network 
(DenseNet) models 
showed a reasonable and 
alike performance of au-
tomated COVID-19 classi-
fication with fn1-scores 
of 0.89 and 0.91 for nor-
mal and COVID-19, re-
spectively. The worst 
classification perfor-
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mance was reached by 
the InceptionV3 model 
with f1-scores of 0.67 for 
normal cases and 0.00 for 
COVID-19 cases 

 [23] The model DeTraC utilized class 
decomposition within the CNNs 
to overcome irregularities in an-
notated data that remains the 
biggest challenge and an insuffi-
cient number of training images.  

The datasets utilized were not 
sufficient and no quantization 
of the infected region of the 
lungs. Also, no indication of 
whether the covid-19 is severe 
or not by the model. 

DeTraC model attained an 
impressive accuracy of 
95.12% (with a sensitivi-
ty of 97.91%, and a speci-
ficity of 91.87%). 

[24] The model creates a Corona 
score that enables estimating the 
disease severity grade and exter-
nal datasets were used during 
testing of the model. 

The datasets used were not 
sufficient enough. The model 
cannot classify another pneu-
monic disease that is similar to 
covid-19.   

The model obtained re-
sults of an Area Under 
Curve (AUC) result of 
0.994 with 94% sensitivi-
ty 
and 98% specificity (at 
threshold 0.5). 

[25] The algorithm does not need 
handcrafted features to work 
efficiently. The datasets used col-
lected across multiple platforms. 
The proposed method compared 
different CNN algorithms, which 
showed DenseNet121 performed 
better. 

The training datasets were not 
sufficient, extending additional 
data sources can enhance the 
efficiency of the model. The 
algorithm not calculates the 
corona score in the lungs and 
does not distinguish the severi-
ty of the disease. 

The results have shown 
that the DenseNet121 
classifier 
obtained the best per-
formance with 99% clas-
sification accuracy. The 
second-best learner wasa 
hybrid of the ResNet50 
feature extractor trained 
by LightGBM with an 
accuracy of 98%. 

[26] Datasets imbalanced were ad-
dressed using the Weighted class 
approach and Random over-
sampling approach. Also, classifi-
cation was done using two differ-
ent designs such as binary classi-
fication and multi-class classifica-
tion. 

The model was not able to 
measured lung infections lesion 
and classification of disease 
based on severity or early 
stage. The study does not in-
clude radiology experts.  

The study examined and 
analyzes different algo-
rithms utilizing bench-
mark performance met-
rics such as accuracy, 
precision, recall, an area 
under a curve, specificity, 
and F1 score under four 
different scenarios con-
cerned with imbalanced 
learning and classification 
strategy. However, models 
obtained a different grade 
in different scenarios, 
among which 
NASNetLarge showed 
better performance espe-
cially in the binary classi-
fication of COVID-19 
samples. 

[27] The proposed model Dense-
Net201 compared with other 
competitive models which 
showed a 1% improvement 
which when applied to larger size 
datasets can save a lot of lives.   

the proposed model not quan-
tifies the size of the lesion in 
the lung, and also, not be able 
to distinguish the initial stage 
and severity of covid-19 from 
CT images.  

The model DenseNet201 
showed a 1% improve-
ment in accuracy which is 
97% compared with the 
accuracies obtained from 
VGG-16 and 
Resnet152V2 are 96% 
and 95%, respectively. 

[28] Automatic detection of lesions by The model is not compared The model showed 96 
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the model and compare perfor-
mance between radiological ex-
perts and the algorithm, which 
the model outperforms the ex-
perts. Also, the model extracted 
the detailedvolume and density of 
each abnormality, a distance of 
lesion from pleura from chest CT 
scan.  

with another existing deep 
learning algorithm. The da-
tasets of other pneumonic dis-
eases were not included in the 
study. Also, the datasets utilized 
was not sufficient, because 
small datasets results cannot be 
generalized well-unseen cases 
and external datasets were not 
utilized to validate the model. 

patients, 88 had pneumo-
nia lesions on CT images 
and 8 had no abnormities 
on CT images. For a per-
patient basis, the algo-
rithm showed superior 
sensitivity of 1.00 (95% 
confidence interval (CI) 
0.95, 1.00) and an F1 
score of 0.97 in detecting 
lesions from CT images of 
COVID-19 pneumonia 
patients. 

[29] A deep learning feature extraction 
model of nine pre-trained CNN 
models utilized and fed to SVM 
classifier individually when statis-
tical analysis is carried out Res-
Net50 plus SVM achieved the 
highest performance compared 
to the other 8 models.  

The models used were not 
trained with other similar 
pneumonic disease and scanty 
datasets used. The model is not 
validated with external da-
tasets. Also, the models are not 
distinguished between initial 
stages and severity of covid-19.  

The results of resnet50 
and SVM show superior 
performance in accuracy, 
FPR, F1 score, MCC and 
Kappa are 
95.38%,95.52%, 91.41%, 
and 90.76% 
respectively for detecting 
COVID-19 

[30] The proposed model gained su-
perior performance of area un-
der curve (AUC) values as com-
pared to the 
competitive models. Also, to defeat 
the challenges of small datasets 
the model exploits transfer learn-
ing algorithms.  

The proposed model not vali-
dated with external datasets, 
and the datasets used were 
very small. 

The results obtained by 
the proposed model 
showed an AUC of 
0.9864, which is the 
highest score among the 
competitive models. 

[32] The classification was done in 
two stages, first without the fea-
ture extraction process, and an-
other with five different feature 
extraction techniques was uti-
lized. 

The proposed model needs to 
be tested in other external 
datasets, and the patient's 
sample CT image was collected 
from a single center and was 
not sufficient enough.   

The results obtained from 
the study showed GLSZM 
feature extraction method 
achieved 99.68% with 
10-fold cross-validation 
accuracy. 

[33] Three different models were 
compared in the study, and to 
defeat the limited number of da-
tasets used, deep transfer learning 
models were utilized. 

The datasets utilized were very 
scanty and collected from a 
single repository. 

The study showed Res-
Net50 pre-trained model 
yielded a superior accura-
cy of 98% among the 
three models. 

[34] The proposed model classifies 
different pneumonic disease 
caused by different pathogens. 
An imbalanced data issue was 
solved with resampling methods, 
and eight different feature sets 
extraction from the image was 
used by the proposed model. 

The datasets used were very 
small, and no cross-validation 
approached. 

The proposed model ob-
tained a macro-avg F1-
Score of 0.65 using a mul-
ti-class approach with 
MLP 
classifier using the LBP 
feature set and resampled 
with ENN. The proposed 
also gainedan F1-Score of 
0.89 for the COVID-19 
identification in the hier-
archical classification 
scenario using the ear-
lyfusion combination of 
BSIF, EQP, and LPQ fea-
ture resampled with 
SMOTE+TL. 
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[35] The proposed model FFT Gabor 
shows supporting the confirma-
tion of the predicted decision by 
visually showing the final fea-
tures upon which decision is 
made. 

The datasets were collected 
from a single repository, and 
the proposed model was not 
tested with the external da-
tasets. 

The results of the study 
showed the FFT-Gabor 
scheme achieved superi-
or performance to predict 
in almost real-time the 
state of the patient with 
an average accuracy of 
95.37%, sensitivity 
95.99%, and specificity 
94.76%. 

[36] The proposed model utilized a 
semantic and ontology-based 
approach, which allows it to 
achieve superior performance 
more than previous work.  

The datasets used were not 
sufficient, and other similar 
pneumonic diseases to covid-
19 were not included. Also, the 
model was tested with external 
datasets. 

The proposed model 
achieved an accuracy of 
94.54%. 

[37] The proposed models test on 
different clinical features of pa-
tients with COVID-19 infections 
and utilized different classifiers 
to 
examine information criterion 
and assess performance. 

The size of the datasets used 
was extensively small to prove 
predictive accuracy 

XGBoost algorithm 
showed superior perfor-
mance in accuracy 
(>85%) to predict and 
select features that 
correctly indicate COVID-
19 status for all age 
groups. Statistical anal-
yses unveil that the most 
frequentand significant 
predictive symptoms are 
fever (41.1%), cough 
(30.3%), lung infection 
(13.1%), and runny 
nose (8.43%). 

[38] Tenfold-cross-validation of train-
ing and evaluation of the algo-
rithms was performed. An en-
courage results showed Mo-
bileNet v2 effectively distin-
guished the Covid-19 cases 
from viral and bacterial pneu-
monia cases from the particular 
dataset. 

The model does not classify 
covid-19 based on mild or se-
vere symptoms, and the da-
tasets used are not enough. 

The proposed models 
result revealed accuracy, 
sensitivity, and specificity 
as 96.78%, 98.66%, and 
96.46% respectively. 

[39] A binary class algorithm and a 
multi-class algorithm were used 
by the proposed model during 
detection. 10-fold cross-validation 
was used during the evaluation of 
the performance of the model.   

A lot of hardware resources are 
required to processed huge x-
ray imaged by Capsule net-
works, therefore this increases 
processing time. Classification 
by capsule networks required 
the same input image size, 
therefore required serious 
processing before passing it to 
the model as input. 

The proposed model 
achieved an accuracy of 
97.24%, and 84.22% for 
binary class, and mul-
ticlass, respectively. 

[40] The proposed hybrid model 
when tested on 1596 chest X-ray 
images revealed a superior per-
formance of COVID-19, normal 
and viral pneumonia with high 
accuracy, which indicates superi-
or to the single deep learning 
model, due to its fast and low cal-

The proposed model not cate-
gorized patients of covid-19 
based on early stages, inter-
mediates, or severe. Secondly, 
not be able to quantify infected 
lesions from the x-ray images.   

The study reveals three 
different results, which 
made-up of the Efficient-
Net-B0 model, which 
showed accuracy, speci-
ficity, precision, recall, 
and F-measure values of 
95.24%, 96.05%, 92.22%, 
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culation cost. 93.61%, and 92.91%, 
respectively. The second 
results belong to 2D 
curvelet transformation 
also achieved accuracy, 
specificity, precision, re-
call, and F-measure val-
ues of 96.87%, 97.46%, 
94.96%, 95.68% and 
95.32%, respectively. The 
last results which belong 
to the hybrid model re-
vealed   accuracy, specific-
ity, precision, recall and 
F-measure values of 
99.69%, 99.81%, 99.62%, 
99.44% and 99.53%, re-
spectively. 

 

3 STATE-OF-THE-ART DATASETS UTILIZED ON THE 

DIAGNOSIS OF COVID-19 INFECTIONS BASED ON 

MEDICAL IMAGE: CHALLENGES AND 

RECOMMENDATIONS.   

Coronavirus has spread worldwide and compromised human 
life. In like manner, a few investigations have been directed to 
create an intelligence clinical diagnosis framework utilizing 
computational intelligence methods to control the impacts of 
this infection. However, various difficulties and exploration 
constraints have been shown on datasets utilized in the scho-
lastic writing and should be tended to later on [41]. Data col-
lection is the initial step to create computational intelligence 
(CI) techniques for COVID-19 applications. Datasets are acces-
sible for the majority of the exploration headings in biomedi-
cal imaging. Notwithstanding, these datasets are limited in 
size for the utilization of deep learning methods. Scientists 
have underscored that bigger datasets are required for deep 
learning algorithms to give better insight and accuracy in di-
agnosis [42]. Even though there exist enormous open-source 
CT or X-ray datasets for lung infections, diabetes, and cancer, 
etc. However, both X-ray, CT scans for COVID-19 applications 
are not broadly accessible at present, which extraordinarily 
thwarts the exploration and development of CI strategies. 
However, distinctive COVID-19 datasets can be found in the 
writing. Some depend on X-ray images [43], while others de-
pend on CT scans images [44]. Each dataset has a few limita-
tions. For instance, a small number of training samples, low-
quality images provided and images size are not equivalent.  
Moreover, a portion of these difficulties are identified with 
covid-19 nature and conduct since seeing how the infection 
spreads and how individuals can be tainted brought about by 
the unpredictability of this pandemic disease is very trouble-
some. The need for a huge dataset in the scholastic writing for 
covid-19 is considered a difficult undertaking for researchers 
since it impedes the comprehension of viral patterns and fea-
tures [45], [46]. The interest to develop a dataset that can be 
perceived by CI algorithms has expanded because the current 

dataset includes infographic information [47]. Different diffi-
culties are associated with individuals and government reac-
tions to covid-19 that requires all the newer observing meth-
odologies and extra endeavors contrasted and the customary 
methodology for controlling pandemic disease [48]. Other 
challenges with covid-19 are the enormous variety in symp-
toms that are generally like basic cold symptoms, with nu-
merous different varieties of infections that may happen in 
cases yet not in others. A few patients have remarkable symp-
toms, and others have no manifestations by any stretch of the 
imagination. Activists have produced tremendous and com-
plex volumes of information that render its investigation illog-
ical and hard to foresee utilizing linear classifiers [49], [50].  
It is obvious from [51] outline four (4) challenges of datasets as 
follows: utilized little dataset size, utilized early phase da-
tasets, the greater part of the datasets utilized are Chinese da-
tasets, and dismissing the validation of the dataset. The little 
dataset isn't sufficient to prepare CI strategies. This is because 
the presentation of the most CI procedures is improved on 
huge datasets. Albeit numerous CI methods have demonstrat-
ed its appropriateness to contain COVID-19 scourges, there 
are questions about the precision of its outcomes. This debili-
tates their materialness, all things considered, for offering con-
crete symptomatic and treatment choices, as depending on 
their outcomes can influence patients' lives. Along these lines. 
After painting all challenges, [51] also accompanying recom-
mendations such as the critical need to grow enormous 
worldwide datasets about COVID-19 pandemic. It is suggest-
ed to sorted datasets under a specific setting. These datasets 
ought to be refreshed constantly. Also, to produce another and 
complete dataset about COVID-19, data mining research is 
prescribed to find the example of these datasets. Moreover, the 
approval of these datasets is important to guarantee their legit-
imacy and security for being utilized by CI procedures for 
control the COVID-19 pandemic. Maybe it is smarter to char-
acterize these datasets by a nation in which it was gathered. 
This is essential to examine whether there is a distinction in 
the consequences of the use of these datasets starting with one 
nation then onto the next, which thus can help in a more pro-
found comprehension of COVID-19 disease by nation and the 
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capacity of its occupants to react to this disease. 
Also, a warning to researchers overusing open-source datasets 
by [52] and those readers ought to know about the accompa-
nying:  

a) Duplication and quality issues. Contributors have no re-

striction to add COVID-19 images to numerous of the 

opensource databank vaults, for example,  [53]–[55]. There 

is a high probability of duplication of images over these 

sources and no affirmation that the cases remembered for 

these datasets are affirmed COVID-19 cases (creators take 

an incredible jump to accept this is valid). Additionally, 

the vast majority of the images have been pre-handled 

and compressed into non-DICOM formats prompting a 

misfortune in quality and an absence of consisten-

cy/similarity. 

b) Source issues. Numerous research papers utilize the 

pneumonia dataset of Kermany et al. [56] as a benchmark 

group. They normally neglect to refer to that this compris-

es of pediatric patients aged somewhere in the range of 

one and five. Building up a model utilizing grown-up 

COVID-19 patients and very young pneumonia patients is 

probably going to overperform all things considered 

simply recognizing youngsters versus grown-ups. This 

dataset is likewise wrongly alluded to as the Mooney da-

taset in numerous papers (being the Kermany dataset 

conveyed on Kaggle [57]). It is likewise imperative to con-

sider the sources of each image class, for instance, if imag-

es for various diagnoses are from various sources. It is ex-

hibited in [58] that by excluding the lung region the crea-

tors could distinguish the source with an AUC between 

0.9210 to 0.9997 and 'analyze' COVID-19 with an 

AUC=0·68.   

c) Frankenstein datasets. The issues of duplication and 

source become intensified when open 'Frankenstein' da-

tasets are utilized, that is, datasets amassed from different 

datasets and redistributed under a new name. For exam-

ple, dataset 55 joins datasets 48–50 and dataset 53 consoli-

dates 14,50,55, disregarding that dataset 50 is now re-

membered for dataset 55. This repackaging of datasets, al-

beit practical, unavoidably prompts issues with algo-

rithms being trained and tested on indistinguishable or 

overlapping datasets while trusting them to be from dif-

ferent sources.  

d) Implicit biases in the source data. Images added to an 

opensource datasets bank and those extracted from publi-

cations [59] are probably to have implicit biases because of 

the commitment source. For instance, additional intri-

guing, unusual, or severe cases of COVID-19 likely show 

up in publications. 
Also, a concluding remark by [60] revealed that they recog-
nized genuine impediments in most, if not all, as of now ac-
cessible datasets. It is desperately required that more images 
from bigger and better datasets are made freely accessible. 

Dataset proprietors should put forth an attempt to improve 
the documentation about the entire datasets building cycle to 
increment fundamentally the dataset esteem and the nature of 
models prepared on them. For instance: there ought to be an 
away to categorically state clear statement of the proposed 
dataset to use, and express warning of regular misused cases; 
label definition and producing technique ought to be account-
ed for in detail, so different analysts can confirm the exactness 
of label assignments and assess the utility and sufficiency to 
the current issue; at long last, datasets ought to contain cohort 
attributes and subject determination models data, to assess the 
danger of choice inclination and to check if the training fur-
thermore, target populace has a comparative characteristic. 
Finally, the joint effort of clinical associations over the globe is 
vital for extending existing datasets. Besides, the exactness of 
augmentation methods in expanding the size of the datasets 
should be evaluated. MRI gives high-resolution images and 
delicate tissue contrast at a greater expense. MRI based Coro-
navirus diagnosis and datasets are requested to contrast their 
accuracy with CT-scans and X-ray based strategies. 

4 STATE-OF-THE-ART APPROACHES UTILIZED BASED 

ON CLINICAL IMAGES  

There is a lot of developing enthusiasm for other diagnostic 
techniques that utilize clinical imaging for the screening and 
diagnosis of COVID-19 cases [61]. This is outstanding because 
of the way that COVID-19 displays specific radiological signa-
tures and image patterns which can be seen in clinical imager 
[5], [62] yet the analysis and identification of these patterns 
remain tedious and time-consuming, for experts' radiologists. 
This makes image examination from lung CT and X-Ray im-
ages of COVID-19 patients a prime possibility for computa-
tional intelligence-based methodologies, which could help 
quicken the investigation of these images, although the degree 
to which imaging can be utilized for diagnosis is as yet under 
development [63], [64]. 
Regardless, there are a few methodologies that plan to use 
computational intelligence for diagnosing COVID-19 from CT 
scan, through binary (for example normal versus Coronavirus 
positive) [17], [24] or multi-class (normal patients versus 
Coronavirus versus different kinds of pneumonia) classifica-
tion tasks utilizing neural network trained without any prepa-
ration [18], [65][20]. These methodologies/approaches utilize 
various models, for example, Inception [66], UNet++ [67], and 
ResNet [68], which can be trained straightforwardly either on 
CT scan, or x-ray marked with areas of interest distinguished 
by radiologists. A few investigations additionally receive a 
hybrid approach, consolidating off-the-shelf software with 
customized computational intelligence approaches to accom-
plish higher accuracy. For instance, in Gozes et al. [14], a mar-
ketable clinical imaging program is utilized for starting image 
processing and afterward joined with a computational intelli-
gence pipeline. The two-advance computational approach 
comprises of U-Net engineering [69] prepared on the clinical 
image of lung irregularities to pinpoint lung regions of interest 
and a Resnet-50 [68] prepared on ImagetNet [70] and calibrat-
ed on COVID-19 cases to classify the images as COVID-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 12, Issue 1, January-2021                                                                                                 882 

ISSN 2229-5518  

 

IJSER © 2021 

http://www.ijser.org 

positive or normal. The subsequent architecture can separate 
pertinent features from the images and distinguish COVID-19 
pneumonia even in situations where there are a few contend-
ing expected diagnosis and can be sent both at emergency clin-
ics to help radiologists quicken the investigation of new cases 
and shared on the Internet to empower fast survey of new im-
ages.  
The recently computational article has shown that X-Ray im-
ages, and explicitly chest radiographs, likewise can be utilized 
for COVID-19 diagnosis and detection. Given the openness 
and possible convenience of the imaging gear required, they 
can be an option in settings where admittance to cutting-edge 
clinical hardware, for example, CT scanners is limited. As ap-
peared in [23], [71], [72], there is potential in the utilization of 
Deep Learning approaches on X-Ray imagery, utilizing models 
like the ones utilized for CT examines (e.g., ResNet [68] and 
Convolutional Neural Networks (CNNs) [73]). Further work 
means to make prediction interpretable [74][21] and guarantee 
that the models can be applied in mobile and low-resources 
settings [75].  
Deployment operation of detection and diagnosis framework 
which report in recent studies, for example, [13], have picked 
human-in-the-loop ways to deal with diminish the investiga-
tion time required while using computational models. The 
researchers utilize little manually-labeled clumps of data for 
training an underlying model given the V-Net engineering 
[76]. This model at that point proposes the segmentation of 
new CT scans, which would then be able to be adjusted by 
radiologists and took back into the model, in an iterative cycle. 
This methodology has empowered the advancement of a Deep 
Learning-based framework for both automatic segmentation 
and the checking of the disease-infected region in the lungs, 
just as surveying the severity of COVID-19, for example, the 
level of disease in the entire lung. The researchers show not 
just that the model improved its performance steadily, yet also 
that the human time required for examination of new images 
dropped from more than 30 minutes at first to under 5 
minutes after 200 annotated sample was utilized to train the 
model, minimized the effort required by radiologists to survey 
other scans. This is a promising heading that saddles the in-
tensity of computational intelligence alongside human annota-
tion and expertise, which can be corresponding and common-
ly advantageous.  
While promising results have been accomplished by numer-
ous clinical imagery-based computational intelligence diag-
nostics techniques, all together for these strategies to be uti-
lized as clinical decision support frameworks, they ought to go 
through clinical investigation and consent of quality control 
and regulations requirements. Specifically, their performance 
ought to be validated on an applicable and differing set of 
training, validation, and test datasets, and they ought to show 
adequacy in the clinical work process [77]. We note that the 
majority of the papers investigated needed to provision for 
these measures, depending on little and inadequately bal-
anced datasets with defective evaluation approaches and no 
arrangement for incorporation in clinical work processes. 

5 DISCUSSION  

This section presents general issues of clinical diagnosis of 

covid-19 based on medical images. Numerous issues that 

emerged in the clinical diagnostic process such as fundamen-

tal difficulties on the identification of abnormalities on diag-

nosis based on clinical image, uncertainty in the clinical do-

main, knowledge acquisition and representation, and finger-

prints of good computational intelligence (CI) approaches in 

clinical diagnosis. 

 

5.1 Fundamental Difficulties on The Identification Of 
abnormalities on Diagnosis Based on Clinical 
Image.  

Clinical assessment of imaging findings ordinarily requires 

investigation of various features, requiring a few degrees of 

examination beyond object recognition and classification (past 

the exemplary visual task of distinguishing "Cat versus Dog)". 

Except if these learning algorithms can be trained with hun-

dreds or thousands of extra computational algorithms to rec-

ognize fluctuating features of a perceived object, it won't yield 

any helpful information about such inquiries. In the clinical 

imaging domain, numerous sorts of imaging pathology re-

quire detailed analysis and investigation of a mix of features, 

likely requiring a more prominent level of testing and valida-

tion, just as a gathering of different narrow computational 

algorithms. In any case, many studies that engaged uses of 

deep learning on some explicit clinical imaging issues have 

just been conceived and evaluated, particularly in the fields of 

cardiothoracic imaging and bosom imaging [78], [79]. 

For computational intelligence framework to recreate com-

pletely the multi-factorial nature of the radiologist's analysis of 

an image, for instance, a chest radiograph, it will probably be 

trained not by only one hug dataset (containing different di-

vergent sorts of radiographic abnormalities), yet by the intro-

duction of different datasets that explicitly strengthen the 

learning related with each class of imaging anomalies, (for 

example, cardiovascular, mediastinal, pneumonic, and rigid) 

just as extra datasets with different significant subclasses of 

imaging variations from the norm (for instance, innate coro-

nary disease). The last total of the various datasets for chest 

radiographic images should be very hugged and extensively 

annotated, to guarantee that the computational intelligence 

experience matches both the depth and broadness of the radi-

ologist's experience and knowledge. A less aggressive training 

approach could be devised to find out whether a radiograph is 

normal or abnormal for triage and emergency purposes, yet 

this methodology would not replicate the capacity and de-

tailed accuracy of expert performance. 

Another serious issue is the establishment of the best quality 

level. For instance, inside a huge dataset of chest radiographs 

in patients suspected to have covid-19, there might be differ-

ences among a few clinical radiologists in image interpreta-
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tion. In clinical practice, one individual radiologist may need 

to not miss an instance of covid-19 because of its high clinical 

effect and accordingly would annotate on cases as confirmed 

covid-19 positive with subtle/non-specific findings Covid-19, 

while another radiologist may not have any desire to overcall 

covid-19 and may rather search for the more classical signs 

explicit to the disease. Along these lines, while making a pre-

dictive model of computational intelligence, does one endeav-

or to make diverse radiologist "personas" (e.g., high sensitivity 

versus high specificity profiles), or predict what a particular 

radiologist will report, or by one way or another make a bal-

ance middle way appealing report or " consensus " report? 

Finally, is the undertaking to predict how a particular radiolo-

gist performs or how an " average " radiologist acts in the in-

terpretation of a radiograph or prediction of the clinical result? 

If the objective is to anticipate the clinical result, at that point 

issues, for example, the prevalence of the disease in a specific 

populace may weigh too vigorously on the performance of the 

framework. These inquiries raise significant, clinically relevant 

issues that have not yet been settled.  

In computational intelligence, the computer's most prominent 

strength - its capacities to process data interminably and to 

repeat similar steps without tiring. However, the issue of over-

fitting-characterized as the function of a learning model (or 

prediction model) that fits so well with its training dataset to 

the degree that it models the statistical noise, variances, biases, 

and error inalienable in the dataset, contrarily affecting the 

performance on new data. This is bound to happen in clinical 

imaging than in other computer vision applications because of 

the generally enormous number of classes of normal and ab-

normal findings and limited quantities of annotated training 

datasets. More concisely, research has shown that overfitting 

occurred "when your learner yields a classifier that is 100% 

accuracy on the training data however just half exact on test 

data when in reality it could have yield one that is 75% accu-

rate on both." [80] While the idea of accuracy in CI was gener-

ally straightforward in the detailed investigations of object 

recognition, we note that radiology has a rich scientific history 

of estimation of diagnostic accuracy, including the improve-

ment of receiver-operating characteristic (ROC) analysis [81]–

[83]. 

Performance of classifier is key to making a diagnostic deci-

sion about CI but then, the run of the utilization of a solitary 

measurement of diagnostic accuracy, while basic, is lacking for 

technical evaluation. Most articles on clinical computational 

intelligence (CI) studies are considerably more informative 

and thorough when they use ROC analysis since its measures 

of sensitivity and specificity are not reliant on the prevalence 

of disease (as is valid for accuracy). Likewise, the measure of 

diagnostic accuracy is ordinarily gotten from the utilization of 

a solitary subjective threshold, though ROC analysis shows 

the performance utilizing all realized or known threshold val-

ues. Nonetheless, since the prevalence of disease influences 

the performance of any diagnostic classifier, it would likewise 

be useful to know the prevalence of the disease in the test 

populace, so the false-positive and false-negative rates could 

be resolved. Precision, which generally deciphers as the prob-

ability that a positive test implies that the disease or find is 

genuinely present (also called the positive predictive value), 

can show the relative strength or weakness in a classifier for 

finding or ailments that are low predominance [84]. 

The issue of overfitting in clinical imaging is additionally am-

plified by the wide variety of "odd" states of normal struc-

tures, and the myriads of anatomic variations identified with 

extra or missing anatomical structures, (for example, embel-

lishment ossicles or congenitally absent or hypoplastic struc-

tures). This issue is made generally apparent by considering 

the issues looked at by a radiology scientist who is gathering 

and classifying the numerous sorts of anatomic structures and 

abnormalities that are found on chest radiography. That spe-

cialist would need to get images and related data for the com-

puter to show variations from the norm of the heart, mediasti-

num, lungs, bones, pleura, and different structures. Recogniz-

ing anatomic variations from pathologic elements has been a 

significant capacity of the practicing radiologist, with an entire 

atlas devoted to helping them abstain from making a false-

positive diagnosis [85]. In some related scientific fields, for 

example, the field of genomics, there has been recognition of 

the inadmissibly " false-positive " rate related to different sorts 

of "wild-type" variations that mimic findings related to genetic 

mutations related to cancer [86]. In one investigation of com-

putational algorithms dedicated to this issue, they described 

the types of false-positive error into six distinct groups and 

recommended that " feature-based analysis of ‘negative’ or 

wildtype positions can be helpful to guide future develop-

ments in software" [86]. This is similar to the issue with ana-

tomic variations in diagnostic radiology. Since the deep learn-

ing approach is exceptionally complex, and because no strate-

gy has been built up that permits a given algorithm to "ex-

plain" it is reasoning, computational intelligence specialists are 

commonly not able to tell completely the explanations behind 

the algorithms decisions, and not able to predict the occur-

rence and recurrence of failure or error in the performance of 

the algorithms [87]. Thusly, validation, and regulatory en-

dorsement could take additional time due to the "Black box" 

nature of computational intelligence techniques. Luckily, sig-

nificant advances have been made as of late in illuminating the 

contents of the CNN black box [88]. One such development, 

saliency maps, was initially proposed in 1998 and depends on 

the " feature-integration theory " of human visual considera-

tion [89]. In 2013, two images of visualization strategies for 

representation inside deep convolutional networks were illus-

trated, one of which included saliency maps [90]. For a given 

output classification value (e.g., a sort of interstitial lung dis-
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ease), saliency maps show the pixels of the image (e.g., CT of 

the chest) that were generally significant for image classifica-

tion. Besides, other more advanced procedures have been built 

up that compose non-human interpretable convolution layers 

into an explanatory and potentially interactive intelligent 

graph or image that can be utilized to accelerate the learning 

cycle and distinguish errors or a significant area of an image 

disregarded by a CNN permitting refinement of the model 

and improving performance [88], [91]. 

Conversely, computational intelligence algorithms have been 

created more than quite a few years, a significant number of 

which are centered around explicit clinical imaging issues, and 

subsequently have moderately narrow imaging applications. 

Instances of these applications include 1) fracture detection, 

bone age determination, and bone mineral density quantita-

tion in orthopedic radiology; 2) brain hemorrhage detection, 

multiple sclerosis detection and quantitation, and regional 

brain segmentation and volumetry in neuroradiology; and 3) 

coronary and/or carotid artery stenosis evaluation, and cardiac 

function assessment in cardiovascular radiology. All together 

for a CI framework to replicate the work of a radiologist, it 

would need to join a huge arrangement of narrow CI algo-

rithms, every one of which has been devised to respond to a 

particular clinical question. The utilization of combinations of 

algorithms to tackle a solitary restricted CI issue or issues has 

been referring to as ensemble strategies in CI and has been 

effective in winning CI rivalries on the classification of com-

plex datasets. In the field of computational intelligence, the 

"sacred goal" is to devise a type of "general computational in-

telligence," which could recreate normal human intelligence. 

Most computer science researchers don't accept that general-

ized computational intelligence will rise in the following 20 

years to come, if at any point. Notwithstanding, different ways 

narrowed computational intelligence can assist with improv-

ing the radiology work process, besides diagnostic interpreta-

tion. There is a wide scope of chances to increment operational 

efficiency, improve the radiology workflow process, and give 

decision help to clinicians and radiologists. 

5.2 Uncertainties in the Clinical Domain 

Uncertainty is an unavoidable and significant issue that has 

pulled in increasing attention in healthcare, given the develop-

ing emphasis on evidence-based diagnosis, mutual decision 

making, and patient-focused consideration. Nonetheless, our 

comprehension of this issue is limited, due to the absence of a 

unified, intelligent concept of uncertainty. There are various 

implications and varieties of uncertainty in medical care, 

which are not regularly distinguished or acknowledged albeit 

each may have exceptional impacts or warrant various courses 

of action[92]. Osler [93] once referenced, medical practice as a 

science of uncertainty and craft of probability. Medical sociol-

ogist Fox [94] recognized that clinical uncertainty in medica-

tion originates from the limitation of clinical knowledge, re-

strictions of individual information, and trouble distinguish-

ing the two. From that point forward, the terms described by 

[95] ‘uncertainty’ and ‘ambiguity' are utilized interchangeably. 

A few researchers, for example, Han et al. [96], accept ambigu-

ity to be one of the sources of uncertainty. Han et al. [96] ob-

served different studies in literature from assorted discipline, 

including psychology, communication, and health services, 

and proposed another scientific classification of clinical uncer-

tainty comprising of three dimensions: sources, issues, and 

locus. The sources of uncertainty derived from 'probability, 

ambiguity, and complexity'. probability alludes to chance, and 

it originates from the indeterminacy of future results. Ambigu-

ity alludes to indecisiveness, and it emerges from imprecision, 

clashing information, and an absence of proof. Complexity 

alludes to incomprehensibility, and it emerges from an as-

sortment of causal factors or trouble on interpretation difficul-

ty.  

However, another research by [97] pointed out three different 

sources of clinical uncertainty depicted as: technical, individu-

al, and conceptual. Insufficient or deficient scientific data 

emerges as a result of technical uncertainty and could be per-

ceived as data related uncertainty. Individual uncertainty 

emerges from an uncertain doctor-patient relationship. Diffi-

culty in applying data to genuine circumstances emerges as a 

result of conceptual uncertainty. First-order uncertainty could 

be viewed as technical uncertainty and second-order could be 

view as individual and conceptual uncertainty, or meta-

uncertainty, as shown by [98]. First-order uncertainty is gotten 

from the unsure likelihood of future results and relates to sci-

entific nature itself, while second-order uncertainty happens 

while applying data to patient care, and it incorporates not 

just uncertainty that emerges from genuine results of given 

probabilities yet additionally patients' desire or level of inter-

est concerning the result [98].  

However, we can recall one of the basic segments involving 

clinical decision is diagnostic thinking. Nonetheless, it has 

been accounted for that the precision of doctors' diagnosis, as 

evaluated by autopsies, has not improved since the mid-

twentieth century [99], [100]. As uncertainty lies in diagnosis 

and treatment, which are the significant segments of clinical 

decision making [101], the impression of uncertainty by doc-

tors during clinical reasoning would force a lot of significance 

on patient care. 

The proposal has been made that building up and adjusting to 

clinical guidelines are productive methods of reacting to un-

certainty in clinical diagnosis and treatment [102]. To be sure, 

doctors will in general react by sticking to guidelines when 

confronted with uncertainty. Notwithstanding, despite the 

utilization of guidelines, uncertainties in clinical practice are 

probably not going to be defeated [103]. Eddy [104] called at-

tention to the that a few parts of clinical knowledge can never 

be confirmed by randomized controlled trial and uncertainty 
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can't be disposed of because of the variance of human nature. 

Furthermore, clinical uncertainty, which can be settled by clin-

ical knowledge and evidence-based research, is limited to 

first- order, or technical uncertainty [97], [102]. Doctors need to 

manage second-order or meta- uncertainty in clinical decision 

making, notwithstanding huge clinical evidence and pro-

foundly refined technical data [102]. 

5.3 Knowledge Acquisition and Representation 

In designing computational intelligence frameworks, the way 

toward eliciting information has been named knowledge ac-

quisition. Also, the process that involves extracting problem-

solving skills from knowledge sources, which are normally 

domain experts is termed Knowledge acquisition (elicitation) 

[105]. In investigation reviewed by [106] knowledge acquisi-

tion is defined as the way toward extracting, structuring, and 

organizing knowledge from a few sources, normally human 

area specialists, so it tends to be utilized in a program. It in-

cludes the acquisition of knowledge from human specialists, 

books, records, sensors, or PC documents. Knowledge acquisi-

tion is a significant and basic stage in the development of a 

computational intelligence framework. Knowledge acquisition 

is considered by numerous individuals to be the most trouble-

some and unstable stage in the knowledge engineering pro-

cess. Knowledge acquisition has regularly been portrayed as 

the bottleneck in computational based frameworks develop-

ment today, subsequently, much theoretical and applied re-

search is as yet being directed in this domain. The achieve-

ment of any computational intelligence framework significant-

ly relies upon the quality, fulfillment, and accuracy of the in-

formation stored in the experts-based system [107], [108]. 

While knowledge representation is the efficient method for 

encoding knowledge on the human specialists in a fitting me-

dium. In computational frameworks development, a decent 

solution relies upon a decent representation. For computation-

al frameworks applications, the underlying decision of a rep-

resentation procedure/technique is especially significant. This 

is because the possible representation procedures/approaches 

are diverse and the forcing criterion for the decision is typical-

ly not satisfactory at the beginning of the project. The result of 

inadequate choice can be a serious issue in the later phases of 

a computational System development, on the off chance that it 

is found that critical data can't be encoded inside the picked 

representation technique or procedure [106]. 
5.4 Fingerprints of Good Computational Intelligence 

(CI) Approaches in Clinical Diagnosis  

This subsection presents the fingerprint of decent CI ap-

proaches in clinical diagnosis. Among the different fingerprint 

describe below, the most noteworthy is the clarity of diagnos-

tic knowledge, explanation, and reasoning capacity. These fin-

gerprints or rather features give solid explanations behind the 

clinicians to embrace the computational intelligence (CI) diag-

nostic framework and to believe in its reliability.  

5.4.1 Clarity of Diagnostic knowledge, Explanation, and 
Reasoning Capacity 

The utilization of computational intelligence (CI) to predict 

diagnostic results depend on programs in which human spe-

cialists decided the features to search for and the rules by 

which these features were to be analyzed [109]. CI prediction 

abilities are frequently portrayed as a "black box." This is be-

cause data are processed through hidden layers of decision-

making that are regularly seen as opaque, with just the results 

accessible to the interpreter [109]–[112]. 

Computational intelligence Application can't communicate 

reasons why a specific conclusion was made and clinicians 

can't determine what data input was utilized to go to a deci-

sion [109], [113]. Achieving knowledge on how a decision is 

reached is challenging, for clinicians as well as for the devel-

oper of the CI framework. Computational intelligence that 

utilizes mathematical algorithms based on artificial neural 

networks might be practically difficult to comprehend the ex-

tent that why or how algorithms arrive at conclusions. Algo-

rithms like decision trees or Bayesian networks are more 

straightforward to inspect [114]. Within a medical care setting, 

CI tools must have the option to give proof concerning how 

they come to arrive at specific conclusions, permitting doctors 

to affirm that the conclusion makes sense and of course right if 

necessary [115]. Abstract, hidden layers may likewise make 

difficulties in looking at and evaluating the performance of 

various CI framework [116].  

In Europe, the General Data Protection Regulation [117] fur-

nishes people with the " right not to be subject to a decision 

based solely on automated means"[118]. The guideline addi-

tionally indicates that people ought to likewise be furnished 

with significant data about how computerized frameworks 

make their decisions [117]. Also, the results of the clinical di-

agnosis undertakings ought to be clear to the clinicians. The 

doctors must have the option to dissect and comprehend the 

results of the clinical diagnostic assignments. In a perfect 

world, the outcomes ought to give the new interrelations that 

are verifiable [119]. The clear diagnostic model can show how 

the results are derived from the input, where the input to the 

model is the patient's data and the results are the predicted 

diagnosis [120]. Clear or transparent models have the trade-

mark property of white boxes which can clarify an official de-

cision rather than non- transparent models which are “black 

box” [120]. 

Official decisions and recommendations are given by the 

framework. The framework ought to have the option to ex-

plain these decisions to the clinicians, especially if there 

should be an occurrence of an unexpected solution for the new 

issue [121]. Otherwise, the clinicians won't consider the 

framework's solution. The clinicians will in general grasp the 

decision support framework that has more similarity with the 

human reasoning style [122].  
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6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS  

The coronavirus disease 2019 (COVID-19) has spread every-

where in the world. Computational intelligence (CI) clinical 

imaging has assumed a significant role in battling against 

COVID-19. Computational intelligence techniques anyway are 

not silver bullets however they have limitations and difficul-

ties, for example, inadequate training and validation data or 

when datasets are abundantly accessible, they are typical of 

low quality. Gigantic endeavors are required for a CI frame-

work to be powerful, effective, and useful. They may incorpo-

rate proper data processing pipelines, model determination, 

proficient algorithm improvement, remodeling and retraining, 

constant performance monitoring, and validation to encourage 

consistent deployment, etc. There are CI ethics standards and 

rules [88], [89] that each period of the CI framework lifecycle, 

for example, design, development, implementation, and ongo-

ing maintenance, may need to cling to, particularly when most 

CI applications against COVID-19 involve or affect human 

beings. The more CI applications are proposed, the more these 

applications need to guarantee fairness, security, logic, ac-

countability, privacy protection, and data security, be aligned 

with human values, and have positive impacts on societal and 

environmental wellbeing. 

Also, it is important that imaging just gives fractional data 

about patients with COVID-19. Accordingly, it is critical to 

combine imaging data with both clinical manifestations and 

laboratory assessment results to help better screening, detec-

tion, and diagnosis of COVID-19. For this situation, we trust 

CI will exhibit its normal ability infusing information from 

these multi-source data, for performing accurate and effective 

diagnosis, analysis, and follow-up. The use of CI methods on 

COVID-19 research is only the start. As presented above, en-

deavors have been made to apply CI to the whole pipeline of 

the imaging-based diagnosis of COVID-19. In any case, there 

are as yet numerous attempts to be directed later on, in the 

future as clarified in the accompanying paragraphs. 

Clinical images ordinarily give negative radiological indica-

tions in the early stage of the disease, and along these lines, 

the investigation of this stage is imperative to help with the 

clinical diagnosis uncertainty. In the interim, numerous cur-

rent CI studies for segmentation and diagnosis are based on 

small and inefficient datasets, which may prompt the overfit-

ting of results. To make the outcomes clinically helpful, the 

quality and number of datasets should be additionally im-

proved. Additionally, existing studies by and large use U-Net 

for image segmentation and CNN models (i.e., ResNet) for 

diagnosis. Interpretability must be a central issue for CI appli-

cation in medical care services. Also, explainable CI is signifi-

cant to comprehend the efficiency of the deep learning algo-

rithms, as well as image features that contribute to the distinc-

tion between COVID-19 and other forms of pneumonia. 

Deep learning has become the predominant technique in bat-

tling against COVID-19. In any case, the imaging data in 

COVID-19 applications may have incomplete, inexact, and 

inaccurate labels, which provides a challenge for training an 

accurate segmentation and diagnostic network. Along these 

lines, weakly supervised deep learning techniques could be 

utilized. Further, manually labeling imaging data is costly and 

tedious, which likewise empowers the investigation of self-

supervised deep learning [123], [124], and deep transfer learn-

ing strategies [125]. Likewise, as deep learning for both seg-

mentation and abnormality classification has been demon-

strated to be promising in studies with noisy labels [126], they 

will be additionally included for possible application for 

COVID-19 diagnosis.  

Follow-up is critical in diagnosing COVID-19 and assessing 

treatment. Even though there are limited studies, we accept 

that the strategies from other related studies could be obtained 

such as the prognosis of other pneumonia infections, CI-based 

technique could rouse the follow-up study of COVID-19 [127]–

[129], the follow-up inside and outside of medical clinics could 

be combined as a long period tracking for the COVID patients, 

and multidisciplinary integration, i.e., clinical imaging [130], 

natural language processing [131], and oncology and fusion 

[131]], could benefit the overall follow-up procedure of meas-

urement for COVID-19. 

Nonetheless, the most important requirements of the clinical 

diagnostic models are good and acceptable performance and 

explanation ability. In any case, these requirements are clash-

ing and, in this manner, difficult to meet in all cases. The sim-

plest models which perform better with fewer attributes have 

great explanation capacity, for instance, decision trees. How-

ever, the performance degrades if there should arise an occur-

rence of huge multi-dimensional datasets. In this case, the 

black-box models (for example ANN and DL) performance is 

great yet it lacks the explanation capacity. Lastly, from the cur-

rent information on the clinical diagnosis, it is clear that any 

single CI method is not competent to efficiently deal with the 

clinical diagnostic tasks. The hybrid methodologies are the 

most promising strategies that improve the performance of 

clinical diagnostic tasks. 

LIMITATIONS 

This paper systematically reviews searched articles gathered 

from selected published major databases. As indicated, the 

review was based development challenges approaches of 

computational intelligence for clinical diagnosis of ('Covid-19' 

or 'Coronavirus') based on clinical imaged. Also, by preset 

inclusion and avoidance criteria, only English articles were 

included in this review, and along these lines, relevant studies 

published in other languages may have been missed.  
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